
Albert-Ludwigs-Universität, Institut für Informatik December 8, 2017
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Schneider, J. Uitto

Algorithm Theory - Winter Term 2017/2018

Exercise Sheet 3

Hand in by Thursday 10:15, November 30, 2017

Exercise 1: Dynamic Programming - MaxIS (5+5 Points)

Let G = (V,E) be a graph. A set of nodes I ⊆ V is called independent if for all u, v ∈ I it holds
that {u, v} 6∈ E. In other words, no two nodes in the independent set I are adjacent. A Maximum
Independent Set (MaxIS) is an independent set with maximum cardinality (number of nodes in I).

(a) Devise an efficient1 algorithm that uses the principle of dynamic programming and finds a maxi-
mum independent set in a rooted tree2.

(b) Prove that your algorithm is correct, i.e. returns a maximum independent set and prove that it
has the claimed runtime.

Sample Solution

(a) Consider an arbitrary tree T = (V,E) rooted at t. We can base our decision whether a node should
be in the MaxIS on the size of the MaxIS of its subtrees. Let s(v) be the size of the maximum
independent set of the subtree rooted at v. Let C(v) be the set of children of node v ∈ V . If we
know the sizes of the MaxIS of v’s children and grandchildren we can compute s(v) recursively as
follows:

s(v) = max

 ∑
u∈C(v)

s(u), 1 +
∑

u∈C(v)

∑
w∈C(u)

s(w)


Algorithm 1 is a recursive algorithm calculating the MaxIS of a tree. It is computing s(v) for all
the nodes in V , and based on the these calculated values determines the MaxIS. For any v ∈ V ,
as soon as s(v) is calculated, it is stored in a memo to avoid the unnecessary recalculations.

(b) Correctness: The resulting set is maxIS. We have to show two properties: That maxIS is inde-
pendent and has maximum cardinality among all independent sets.

Claim: For any subtree T ′ = (V ′, E′), V ′∩ maxIS is a maximum independent set of T ′ of size
s(v) (v is the root of T ′), where maxIS is the node set calculated by Algorithm 1.

Proof. We show this with induction on the structure of the tree. Induction base: For a leaf v
we have g = 1 and c = 0 (note that we define a sum over an empty set as 0) which is therefore
added to maxIS. Then maxIS is independent and has maximum cardinality s(v) = 1.

Induction hypothesis: Assume the claim is true for all subtrees attached to v ∈ V . Let
T ′ = (V ′, E′) be the subtree rooted at v.

1An algorithm is efficient if it has a runtime of O
(
p(n)

)
, where p(n) is a polynomial and n the size of the input.

2The input graph is connected, has no cycles, has a dedicated root node, and each node knows its parent and children.

1

Algorithm 1: TreeMaxIS(v, T) (We consider integer array memo, set maxIS to be global)

if memo[v] 6= ⊥ then // If s(v) is already calculated
return memo[v]

c←
∑

u∈C(v)TreeMaxIS(u, T) // Size of MaxIS without v

g ← 1 +
∑

u∈C(v)

∑
w∈C(u)TreeMaxIS(w, T) // Size of MaxIS with v

// Base cases: v has no (grand-)children covered by defining
∑
∅

(·) := 0

if g > c then
add v to maxIS

memo[v]← max{c, g}

return memo[v]

Induction step: First we show that V ′ ∩ maxIS is independent in T ′. Due to the induction
hypothesis we have independence if v /∈ maxIS. So let us consider v ∈ maxIS. If v joined maxIS

we have g > c. Now the independence of V ′ ∩ maxIS is only violated if at least one child of
v is in maxIS. For a contradiction assume this is the case. A child of v joined maxIS only if
we obtain a bigger MaxIS by adding it instead of its children (v’s grandchildren), i.e., condition
s(u) >

∑
w∈C(u) s(w) applies for at least one child u of v. Thus∑

u∈C(v)

s(u) >
∑

u∈C(v)

∑
w∈C(u)

s(w)

⇐⇒ c =
∑

u∈C(v)

s(u) ≥
∑

u∈C(v)

∑
w∈C(u)

s(w) + 1 = g

a contradiction to g > c.

Moreover, since we pick as s(v) the maximum of
∑

u∈C(v) s(u) and 1 +
∑

u∈C(v)

∑
w∈C(u) s(w)

we ensure that s(v) is the size of a maximum independent set (induction hypothesis for children
and grandchildren applies, thus we calculated s(u), s(w) in the formula correctly). Since we select
maxIS in accordance with the choice we make to calculate s(v), we have s(v) = |V ′ ∩ maxIS|, thus
maxIS is maximum in T ′.

Runtime: First consider the number of calls of TreeMaxIS. TreeMaxIS(v) is called only by
v’s parent and grandparent. Moreover, TreeMaxIS(v) is called at most once by its parent and
grandparent, because after the first call the size of their MaxIS is memorized and they will never
make recursive calls again. Thus TreeMaxIS is called at most 2|V | = O(|V |) times in total.

Besides recursion, the costliest operations that remain in TreeMaxIS are the summations done in
TreeMaxIS. So each node occurs in a sum at most twice, once due to its parent and once due to
its grandparent. Therefore the overall number of summations we do in the calls of TreeMaxIS is
2|V | = O(|V |). This gives us a linear runtime in the input size.

Exercise 2: Worst Case Analysis - Fibonacci Heaps (3+7 Points)

Fibonacci heaps are efficient in an amortized sense. However, the time to execute a single operation can
be quite large. Show that in the worst case, (a) the delete-min operation and (b) the decrease-key

operation can require time Ω(n) for an arbitrary n.

Hint: Describe a valid scenario where the delete-min or decrease-key operation respectively requires
at least linear time in n for an arbitrary n.

2

Sample Solution

(a) A costly delete-min : First n elements are added to the heap, which causes them all to be roots
in the root list. Deleting the minimum causes a consolidate call, which combines the remaining
n− 1 elements, which need at least n− 2 merge operations, i.e., it costs Ω(n) time.

(b) A costly decrease-key : We construct a degenerated tree Tn with the root rn, that has two
children rn−1 and cn. Node cn is unmarked and rn−1 is marked. The latter has a single child rn−2
that is also marked and has a single child rn−3 and so on, until leaf r1 (which may be marked or
unmarked). In other words, Tn consists of a line of marked nodes, plus the root and one further
unmarked child of the root. Let kn be the key of the root rn.

For the purpose of an inductive construction procedure, we show how to create a Tn+1 from a
Tn. First we add add another 5 nodes to the heap and delete the minimum of them, causing a
consolidate. In more detail let us add a node rn+1 with key kn+1 ∈ (0, kn), a node with key 0 and
three nodes with keys k′ > kn+1. When we delete the minimum, first both pairs of singletons are
combined to two trees of rank 1, which are combined again to one binomial tree of rank 2, with
the node rn+1 as the root and we name its childless child cn+1 (confer the picture for the current
state).

rn

rn−1

rn−2

?

r1

cn

rn+1

?

?

cn+1

Since also Tn has rank 2 we now combine it with the new tree and rn+1 becomes the new root. We
now decrease the key of cn to 0 as well as the keys of the two (?)-nodes and delete the minimum
after each such operation. Note that a root node will not get marked or cut! Decreasing the key
of cn, however, will now mark its parent rn, as it is not a root anymore. Thus the remaining heap
is of exactly the same shape as Tn, except that its depth did increase by one: a Tn+1.

Using the same technique as before we obtain the tree above. We cut off the lowest leaf and
now have a T1. Together with the construction procedure above the rest follows via induction.
Obviously, a decrease-key operation on r1 will cause a cascade of Ω(n) cuts if applied to a heap
consisting of such a Tn.

3

Exercise 3: Amortized Analysis - Counting (4+6 Points)

Consider non-negative integers in their canonical bit-representation. Similarly to the lecture, we
execute n increment operations (add 1) starting from 0. For the analysis, we add a little twist.
Flipping the ith bit bi

3 now has a cost 2i.

(a) Show that the amortized cost is super-constant (i.e. in ω(1)).

(b) Show that the amortized cost is O(log n).

Sample Solution

(a) When counting up to n − 1, bit i is flipped at least 2k−i times. E.g., the least significant bit is
flipped n times incurring a cost of n in total (not amortized). Assume now that the amortized cost
is at most c for some constant c (i.e., O(1)). Let n be a positive integer such that log n =: k > c
for some constant k ∈ N0. Now, we get that the total cost of counting up to n is at least

2k · 20 + 2k−1 · 21 + 2k−2 · 22 + . . . + 20 · 2k = k · 2k = n log n > c · n

implying that the amortized cost (i.e. divided by number of increment operations n) is bigger than
c, a contradiction.

(b) The solution is a modification of the accounting argument from the lecture. First, we observe that
in each increment operation there occurs at most one bit-flip from 0 to 1 (since carry-overs occur
only when bits are flipped from 1 to 0). Second, we observe that when bit bi is flipped from 0 to
1 and back to 0 again, the lesser significant bit bi−k was flipped from 0 to 1 for 2k times before
(e.g. apply an inductive argument). What we do is this:

• Whenever a bit is flipped from 0 to 1, we pay in total 2dlog ne to the bank spread over
separate accounts (where dlog ne is the number of bits that are needed to count to n − 1).
Specifically, we pay 2 coins on each account ai for i ∈ {1, . . . , dlog ne}.
• Moreover, when bit bi is flipped in either direction we subtract 2i from account ai to pay

for that flip.

Based on our observations, we show that every account ai stays balanced. By the second observa-
tion, after we flipped bi from 0 to 1 back to 0, each of the lower bits bi−k has been paying 2 coins
to ai for 2k times. This means that together with the two coins that bi itself was paying on its
own account, we have that after we flipped bi from 0 to 1 back to 0 we already paid

2 ·
k∑

i=0

2i = 2 · 2k+1 − 1 ≥ 2 · 2k

to ai which suffices to pay for both flips of bi from 0 to 1 back to 0. Since there is only one flip from
0 to 1 per increment operation, we are paying only 2dlog ne ∈ O(log n) to the bank per increment,
thus proving the claim.

Exercise 4: Amortized Analysis - Multisets (10 Points)

Let S be a multiset of integers (a set which allows duplicate values). We would like to change S as
follows. Either we insert a new element into S, or we delete the d|S|/2e largest elements from S (in case
of removing some but not all the duplicates of the same element, we break the tie arbitrarily). Design
a data structure that supports two operations Insert(S, x) and DeleteLargerHalf(S) such that any
sequence of m operations starting from an empty multiset takes O(m) time. Prove the correctness
and amortized runtime of your implementation of Insert(S, x) and DeleteLargerHalf(S).

Hint: There is an algorithm to find the median of a multiset of n integers in O(n) time. You can use
it as a blackbox.

3Bit bi is the bit in the ith position ascending from the least significant bit.

4

Sample Solution

Regarding the data structure, we consider a doubly linked list. Let us now study the actual cost of
the two operations. Adding an element into a doubly linked list has a constant cost by just adding the
element to the head of the list. For removing the larger half of k elements, we can calculate the mean
in time O(k), and then for removing the the largest dk/2e elements, we scan the doubly linked list
twice as follows. In the first scan, we remove all the elements smaller than the mean. In the second
scan, we remove the elements which are equal to the mean as long as we removed less than dk/2e
elements. Note that removing an element from a doubly linked costs constant by changing a constant
number of pointers.
Hence, the actual cost for the Insert(S,x) operation is constant and for the DeleteLargerHalf(S)

operation is linear in the size of S. Now let us show that the amortized cost of each of these operations
in a sequence of operations starting at an empty doubly linked list is constant. Let Φ = 2N be the
potential function when N is the current number of elements in the doubly linked list. Clearly the
potential function cannot be negative as the size of the data structure is always non-negative.
For the analysis, we normalize the cost of Insert(S,x) and DeleteLargerHalf(S) to 1 and |S|
respectively (c.f. lecture). Fix an arbitrary sequence of operations. Then let Ni−1 denote the number
of elements in S before the ith operation and Ni the number of elements after the ith operation 4.
In the following ai and ti are amortized and actual costs, respectively, for operation i. For the ith

operation we consider the cases that it is an Insert or a DeleteLargerHalf operation separately:

If the ith operation is Insert(S,x), then:

Ni = Ni−1 + 1.

ti = 1 (the actual cost of operation Insert(S,x)).

ai = ti + Φi − Φi−1 = 1 + 2Ni−1 + 2− 2Ni−1 = 3 ∈ O(1).

If the ith operation is DeleteLargerHalf(S), then:

Ni = Ni−1 − dNi−1/2e.
ti = Ni−1 (the actual cost of operation DeleteLargerHalf(S)) as given in the exercise.

ai = ti + Φi − Φi−1 = Ni−1 + (2Ni−1 − 2dNi−1/2e)− 2Ni−1 = Ni−1 − 2dNi−1/2e ≤ 0 ∈ O(1).

Hence, the amortized costs for both operations Insert(S,x) and DeleteLargerHalf(S) are constant.

4Ni depends on the type of operation that is performed in step i. Thus Ni differs in the two considered cases

5

